Premium
Optimization of multiple‐fraction batch distillation by nonlinear programming
Author(s) -
Farhat S.,
Czernicki M.,
Pibouleau L.,
Domenech S.
Publication year - 1990
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690360908
Subject(s) - distillation , batch distillation , decoupling (probability) , fraction (chemistry) , nonlinear system , mathematical optimization , constant (computer programming) , fractional distillation , dynamic programming , computer science , nonlinear programming , set (abstract data type) , exponential function , linear programming , transformation (genetics) , process engineering , mathematics , control theory (sociology) , engineering , chemistry , chromatography , control engineering , artificial intelligence , mathematical analysis , biochemistry , physics , control (management) , quantum mechanics , gene , programming language
Batch distillation processes are very attractive for the recent development of the chemical industry: multipurpose, flexible plants and fine chemistry. For many separations of high‐added value products, even a modest change in operating conditions has a significant economic impact—there is an important challenge for optimizing such processes. Short‐cut and dynamic models are the two classical approaches to the simulation of batch distillation columns. For problems without holdup, an intermediate procedure based on a decoupling method is validated. For a multifraction separation problem with fixed final time, the reflux policies for each period and the period switching times constitute the set of decision variables. For predefined reflux policies, we apply an engineering approach to the solution of a such constrained variational problem, based on its transformation into a nonlinear programming problem. In this computer‐implementable algorithm, the gain in distillate for the optimal linear or exponential reflux policies is significant (about 10%) compared with the optimal constant reflux policy.