z-logo
Premium
Numerical calculation of particle‐laden gas flows past tubes
Author(s) -
Schuh M. J.,
Schuler C. A.,
Humphrey J. A. C.
Publication year - 1989
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690350315
Subject(s) - mechanics , turbulence , drag , laminar flow , particle (ecology) , flow (mathematics) , tube (container) , inertia , magnetosphere particle motion , physics , classical mechanics , materials science , geology , oceanography , quantum mechanics , magnetic field , composite material
A numerical study has been conducted for the flow of a dilute particleladen gas moving past one or more tubes undergoing erosion. A nonor‐thogonal body‐fitted coordinate system was used to calculate three tube configurations for laminar and turbulent flow regimes. The assumption of one‐way coupling allows the calculation of individual particle velocities from the fluid flow field. The significant effects of turbulent velocity fluctuations are taken into account by means of the stochastic separated flow model. The particle flow field information is then used to predict circumferential distributions of particle flux and erosion. Predictions of trajectories for the case of two in‐line tubes show that particles with inertia numbers λ > 1 will strike many tubes in a tube bank due to particle rebounding from tube surfaces. By contrast, particles with λ < 1 are entrained in the bulk flow between tubes. In general, the effect of increasing the particle‐gas suspension temperature is to couple the particle‐fluid motion more closely through viscous drag and, thus, to decrease erosion.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here