Premium
Quantitative distinction of thermodynamic soluble and miscible states
Author(s) -
Zhang Kaiqiang,
Jia Na,
Liu Lirong
Publication year - 2020
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.16977
Subject(s) - solubility , thermodynamics , ternary operation , hildebrand solubility parameter , chemistry , binary number , work (physics) , flory–huggins solution theory , organic chemistry , mathematics , physics , polymer , arithmetic , computer science , programming language
Soluble and miscible states are two important thermodynamic states in academic research and practical applications but their quantitative distinctions are still fuzzy. In this study, for the first time, the mathematical formulations of the quantitative criteria for distinguishing the thermodynamic soluble and miscible states are analytically developed by means of the Flory–Huggins solution theory and solubility parameter. The quantitative bottom and upper solubility limits for a total of 13 binary and ternary mixtures are calculated at different conditions. Moreover, the composition, temperature and pore radius are specifically studied to evaluate their effects on the soluble and miscible states. On the basis of the work from this study, the insoluble, soluble but immiscible, and miscible states are definitively quantified and clearly distinguished for the first time.