z-logo
Premium
Composite double network hydrogels with thermoresponsive colloidal nanoemulsions
Author(s) -
Kass Lauren,
CardenasVasquez Ernesto Daniel,
Hsiao Lilian C.
Publication year - 2019
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.16817
Subject(s) - self healing hydrogels , materials science , ethylene glycol , composite number , composite material , chemical engineering , polymer chemistry , engineering
Abstract We report the formulation and mechanical characterization of double network (DN) composite hydrogels. The first network consists of covalently crosslinked poly(ethylene glycol diacrylate) (PEGDA), which forms a strong, brittle network that provides elasticity to the gel. The second network, sodium alginate, is ionically crosslinked with Ca 2+ to allow increased dissipation of mechanical energy. The novelty of this system over existing DN hydrogels is the additional incorporation of a third mesoscale network, composed of thermoresponsive poly(dimethyl siloxane) (PDMS) nanoemulsions, which undergo colloidal gelation through the bridging of the PEGDA hydrophobic end groups into the PDMS droplets. The colloidally gelled microstructures are photopolymerized into a solid hydrogel by crosslinking the precursors with ultraviolet (UV) light. Tensile mechanical experiments performed on the crosslinked DN nanoemulsion hydrogels show that their rupture stress (0.17–0.34 MPa), fracture energy (144–421 J/m 2 ), and Young's modulus (1–2.1 MPa) are comparable to similar systems in the literature. These mechanical measurements suggest that the gels may be suitable for manufacturing processes in which large shear rates and deformations are encountered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here