z-logo
Premium
Modular methanol manufacturing from shale gas: Techno‐economic and environmental analyses of conventional large‐scale production versus small‐scale distributed, modular processing
Author(s) -
Yang Minbo,
You Fengqi
Publication year - 2018
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15958
Subject(s) - monetization , oil shale , modular design , petroleum engineering , environmental science , natural gas , waste management , process engineering , engineering , computer science , economics , macroeconomics , operating system
This article presents comparative techno‐economic and environmental analyses of four representative shale gas monetization options, namely, conventional shale gas processing, large‐scale methanol manufacturing, modular methanol manufacturing with shale gas supplied by pipelines, and modular methanol manufacturing with consideration of plant relocation. We first present shale gas supply models for the four gas monetization options. Next, the process designs for shale gas processing and methanol manufacturing from shale gas are described. We develop detailed process simulation models for shale gas processing and methanol manufacturing with different scales using raw shale gas extracted from the Marcellus, Eagle Ford, and Bakken shale plays. On this basis, techno‐economic analyses and environmental impact analyses are conducted for the four shale gas monetization options to systematically compare their economic and environmental performances based on the same conditions. The results show that modular methanol manufacturing is more economically competitive than conventional shale gas processing, although it leads to higher environmental impacts. Besides, modular methanol manufacturing is better than large‐scale methanol manufacturing for raw shale gas produced from distributed, remote wells from both economic and environmental perspectives. © 2017 American Institute of Chemical Engineers AIChE J , 64: 495–510, 2018

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here