z-logo
Premium
Characterizations of surfactant synthesized from Jatropha oil and its application in enhanced oil recovery
Author(s) -
Kumar Sudhir,
Kumar Amit,
Mandal Ajay
Publication year - 2017
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15651
Subject(s) - pulmonary surfactant , enhanced oil recovery , surface tension , chemical engineering , critical micelle concentration , wetting , chemistry , microemulsion , materials science , micelle , organic chemistry , aqueous solution , thermodynamics , physics , engineering
Surfactants are frequently used in chemical enhanced oil recovery (EOR) as it reduces the interfacial tension (IFT) to an ultra‐low value and also alter the wettability of oil‐wet rock, which are important mechanisms for EOR. However, most of the commercial surfactants used in chemical EOR are very expensive. In view of that an attempt has been made to synthesis an anionic surfactant from non‐edible Jatropha oil for its application in EOR. Synthesized surfactant was characterized by FTIR, NMR, dynamic light scattering, thermogravimeter analyser, FESEM, and EDX analysis. Thermal degradability study of the surfactant shows no significant loss till the conventional reservoir temperature. The ability of the surfactant for its use in chemical EOR has been tested by measuring its physicochemical properties, viz., reduction of surface tension, IFT and wettability alteration. The surfactant solution shows a surface tension value of 31.6 mN/m at its critical micelle concentration (CMC). An ultra‐low IFT of 0.0917 mN/m is obtained at CMC of surfactant solution, which is further reduced to 0.00108 mN/m at optimum salinity. The synthesized surfactant alters the oil‐wet quartz surface to water‐wet which favors enhanced recovery of oil. Flooding experiments were conducted with surfactant slugs with different concentrations. Encouraging results with additional recovery more than 25% of original oil in place above the conventional water flooding have been observed. © 2017 American Institute of Chemical Engineers AIChE J , 63: 2731–2741, 2017

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here