z-logo
Premium
Direct silanization of polyurethane foams for efficient selective absorption of oil from water
Author(s) -
Xiong Sen,
Zhong Zhaoxiang,
Wang Yong
Publication year - 2017
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15629
Subject(s) - silanization , polyurethane , absorption (acoustics) , solvent , materials science , chemical engineering , absorption of water , absorption capacity , composite material , chemistry , organic chemistry , engineering
Absorption is an effective method to collect oil spills and solvent leakages from water. However, the currently used oil absorbents are still suffering from high cost, tedious preparation, and low recyclability. In this work, we report an extremely simple and low‐cost strategy to produce oil absorbents by directly coupling alkoxysilane onto the surface of polyurethane (PU) foams. Such direct silanization renders the initially amphiphilic foams a strong hydrophobicity and consequently a water‐repelling and oil‐absorptive functionality. The silanized foams exhibit highest absorption capacities as well as best recyclability among all PU‐based oil absorbents. More practically, the silanized PU foams can be used to recover crude oil spills with an absorption capacity of higher than 75 times of their own weight, and maintain 90% of the initial absorption capacity after eight times reusage. Interestingly, we invent portable oil suckers for continuous oil absorption from water by filling vacuum cleaners with the silanized foams. © 2017 American Institute of Chemical Engineers AIChE J , 63: 2232–2240, 2017

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here