Premium
Linear model predictive control for transport‐reaction processes
Author(s) -
Xu Qingqing,
Dubljevic Stevan
Publication year - 2017
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15592
Subject(s) - discretization , linear quadratic regulator , partial differential equation , optimal control , model predictive control , mathematical optimization , mathematics , controller (irrigation) , linear system , computer science , control theory (sociology) , control (management) , mathematical analysis , artificial intelligence , agronomy , biology
The article deals with systematic development of linear model predictive control algorithms for linear transport‐reaction models emerging from chemical engineering practice. The finite‐horizon constrained optimal control problems are addressed for the systems varying from the convection dominated models described by hyperbolic partial differential equations (PDEs) to the diffusion models described by parabolic PDEs. The novelty of the design procedure lies in the fact that spatial discretization and/or any other type of spatial approximation of the process model plant is not considered and the system is completely captured with the proposed Cayley‐Tustin transformation, which maps a plant model from a continuous to a discrete state space setting. The issues of optimality and constrained stabilization are addressed within the controller design setting leading to the finite constrained quadratic regulator problem, which is easily realized and is no more computationally intensive than the existing algorithms. The methodology is demonstrated for examples of hyperbolic/parabolic PDEs. © 2017 American Institute of Chemical Engineers AIChE J , 63: 2644–2659, 2017