Premium
Process design methodology for energy‐efficient processes operating below and across ambient temperature
Author(s) -
Marmolejo Correa Danahe,
Gundersen Truls
Publication year - 2016
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15200
Subject(s) - exergy , heat exchanger , gas compressor , process engineering , process (computing) , process integration , heat transfer , process design , mechanical engineering , engineering , computer science , thermodynamics , physics , operating system
This article presents a targeting and design methodology that can be implemented for any process where pressure‐based exergy, also known as mechanical exergy, has an important contribution to the total exergy conversion and transfer. However, in this article it is applied to processes that operate at sub‐ambient conditions, or processes where the ambient conditions are crossed. Exergy efficiencies, new Exergetic Composite Curves, Cascades, and Extended Grid Diagrams are tools that had to be implemented, improved, or invented, to develop a methodology with considerable potential for energy‐efficient process design. The appropriate placement (correct integration) of compressors and expanders in heat exchanger networks is also analyzed to minimize the number of units. An example is used to demonstrate the methodology, where several simplifying assumptions are made to facilitate understanding and to explain the design method. © 2016 American Institute of Chemical Engineers AIChE J , 62: 2324–2340, 2016