Premium
Hybrid model for optimization of crude oil distillation units
Author(s) -
Fu Gang,
Sanchez Yoel,
Mahalec Vladimir
Publication year - 2016
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.15086
Subject(s) - distillation , boiling point , vacuum distillation , process engineering , heat exchanger , mean squared error , fractionating column , boiling , petroleum engineering , engineering , chemistry , mathematics , mechanical engineering , chromatography , statistics , organic chemistry , chemical engineering
Planning, scheduling, and real time optimization are currently implemented using different types of models, which causes discrepancies between their results. This work presents a single model of a crude distillation unit (preflash, atmospheric, and vacuum towers) suitable for all of these applications, thereby eliminating discrepancies between models used in these decision processes. Product true boiling point (TBP) curves are predicted via partial least squares model from the feed TBP curve and operating conditions (flows, pumparound heat duties, furnace coil outlet temperatures). Combined with volumetric and energy balances, this enables prediction of crude distillation on par with a rigorous distillation model, with 0.5% root mean square error (RMSE) over a wide range of conditions. Associated properties (e.g., gravity, sulfur) are computed for each product based on its distillation curve and corresponding property distribution in the feed. Model structure makes it particularly amenable for development from plant data. © 2015 American Institute of Chemical Engineers AIChE J , 62: 1065–1078, 2016