Premium
Anatomy of a rapid pressure swing adsorption process performance
Author(s) -
Vemula Rama Rao,
Kothare Mayuresh V.,
Sircar Shivaji
Publication year - 2015
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.14779
Subject(s) - pressure swing adsorption , adiabatic process , helium , pressure drop , mass transfer , chemistry , thermodynamics , adsorption , air separation , heat transfer , heat exchanger , sorption , materials science , mechanics , nuclear engineering , chromatography , engineering , organic chemistry , physics , oxygen
A detailed numerical study of the individual and cumulative effects of various mass, heat, and momentum transfer resistances, which are generally present inside a practical adiabatic adsorber, on the overall separation performance of a rapid pressure swing adsorption (RPSA) process is performed for production of nearly pure helium gas from an equimolar binary (N 2 +He) gas mixture using 5 A zeolite. Column bed size factor (BSF) and helium recovery (R) from the feed gas are used to characterize the separation performances. All practical impediments like column pressure drop, finite gas‐solid mass and heat transfer resistances, mass and heat axial dispersions in the gas phase, and heats of ad(de)sorption causing nonisothermal operation have detrimental impacts on the overall process performance, which are significantly accentuated when the total cycle time of a RPSA process is small and the product gas helium purity is high. These impediments also prohibit indefinite lowering of BSF (desired performance) by decreasing process cycle time alone. © 2015 American Institute of Chemical Engineers AIChE J , 61: 2008–2015, 2015