z-logo
Premium
Experimental study of flow regimes in three‐dimensional confined impinging jets reactor
Author(s) -
Li WeiFeng,
Du KeJiang,
Yu GuangSuo,
Liu HaiFeng,
Wang FuChen
Publication year - 2014
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.14459
Subject(s) - reynolds number , mechanics , particle image velocimetry , flow visualization , inlet , nozzle , vortex , flow (mathematics) , jet (fluid) , oscillation (cell signaling) , physics , instability , boundary layer , materials science , chemistry , thermodynamics , turbulence , mechanical engineering , engineering , biochemistry
Dynamic behaviors in a three‐dimensional confined impinging jets reactor (CIJR) were experimentally studied by a flow visualization technique at 100 ≤ Re ≤ 2000 and 2 ≤ D/d ≤ 12 (where D is the reactor diameter and d is the nozzle diameter). The effects of inlet Reynolds numbers (Re) and geometry configurations of the CIJR on the flow regimes have been investigated by a particle image velocimetry and a high‐speed camera. Results show that with the increasing Re, a segregated flow regime, a radial deflective oscillation, an axial oscillation and a vortex shedding regime emerge in turns in CIJR. A map of parameter space formed by the inlet Reynolds number (Re) and the normalized reactor diameter (D/d) has been presented. The effects of jet instability and confined boundary of the chamber on the flow regimes and their transition are also investigated and discussed. © 2014 American Institute of Chemical Engineers AIChE J , 60: 3033–3045, 2014

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom