z-logo
Premium
Steam reforming of ethanol over skeletal Ni‐based catalysts: A temperature programmed desorption and kinetic study
Author(s) -
Zhang Chengxi,
Li Shuirong,
Wu Gaowei,
Huang Zhiqi,
Han Zhiping,
Wang Tuo,
Gong Jinlong
Publication year - 2014
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.14264
Subject(s) - methanation , steam reforming , chemistry , catalysis , water gas shift reaction , nickel , methane , reaction rate , inorganic chemistry , decomposition , syngas , methane reformer , desorption , chemical kinetics , hydrogen production , kinetics , organic chemistry , adsorption , physics , quantum mechanics
An investigation on reaction scheme and kinetics for ethanol steam reforming on skeletal nickel catalysts is described. Catalytic activity of skeletal nickel catalyst for low‐temperature steam reforming has been studied in detail, and the reasons for its high reactivity for H 2 production are attained by probe reactions. Higher activity of water gas shift reaction and methanation contributes to the low CO selectivity. Cu and Pt addition can promote WGSR and suppress methanation, and, thus, improve H 2 production. A reaction scheme on skeletal nickel catalyst has been proposed through temperature programmed reaction spectroscopy experiments. An Eley‐Rideal model is put forward for kinetic studies, which contains three surface reactions: ethanol decomposition, water gas shift reaction, and methane steam reforming reaction. The kinetics was studied at 300–400°C using a randomized algorithms method and a least‐squares method to solve the differential equations and fit the experimental data; the goodness of fit obtained with this model is above 0.95. The activation energies for the ethanol decomposition, methane steam reforming, and water gas shift reaction are 187.7 kJ/mol, 138.5 kJ/mol and 52.8 kJ/mol, respectively. Thus, ethanol decomposition was determined to be the rate determining reaction of ethanol steam reforming on skeletal nickel catalysts. © 2013 American Institute of Chemical Engineers AIChE J 60: 635–644, 2014

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here