z-logo
Premium
Aromatic sulfur‐nitrogen extraction using ionic liquids: Experiments and predictions using an a priori model
Author(s) -
Anantharaj Ramalingam,
Banerjee Tamal
Publication year - 2013
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.14224
Subject(s) - thiophene , ionic liquid , toluene , pyridine , chemistry , solvent , sulfur , organic chemistry , catalysis
The tie‐line composition of three quaternary system namely 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]) ([EMIM][OAc]) (1) + thiophene (2) + pyridine (3) + toluene (4), 1‐ethyl‐3‐methylimidazolium ethylsulphate ([EMIM][EtSO 4 ]) (1) + thiophene (2) + pyridine (3) + toluene (4), 1‐ethyl‐3‐methylimidazolium methylsulphonate ([EMIM][MeSO 3 ]) (1) + thiophene (2) + pyridine (3) + toluene (4) were experimentally determined at 298.15 K. The measured tie‐line data were successfully correlated with the nonrandom two liquid and UNIversal QUAsiChemical model prediction which gave less than 1% root mean square deviation (RMSD). [EMIM][MeSO 3 ] looks to be a promising solvent for the simultaneous separation having distribution ratios less than unity for both thiophene and pyridine. The quantum chemical‐based conductor like screening model for real solvent (COSMO‐RS) model was then used to predict the tie‐line composition of quaternary systems. COSMO‐RS gave the RMSD for the studied systems to be 8.41, 8.74, and 6.53% for the ionic liquids, respectively. © 2013 American Institute of Chemical Engineers AIChE J , 59: 4806–4815, 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here