z-logo
Premium
Mixing behaviors of wet granular materials in gas fluidized bed systems
Author(s) -
Chuan Lim Eldin Wee,
Hee Tan Reginald Beng,
Xiao Zongyuan
Publication year - 2013
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.14177
Subject(s) - fluidization , mixing (physics) , capillary action , discrete element method , drag , particle (ecology) , mechanics , fluidized bed , granular material , chemistry , materials science , composite material , geology , physics , organic chemistry , quantum mechanics , oceanography
The discrete element method combined with computational fluid dynamics was coupled with a capillary liquid bridge force model for computational studies of mixing behaviors in gas fluidized bed systems containing wet granular materials. Due to the presence of strong capillary liquid bridge forces between wet particles, relative motions between adjacent particles were hindered. There was a high tendency for wet particles to form large aggregates within which independent motions of individual particles were limited. This resulted in much lower mixing efficiencies in comparison with fluidization of dry particles. Capillary liquid bridge forces were on average stronger than both fluid drag forces and particle–particle collision forces and this accounted for the difficulty with which individual particles could be removed and transferred between aggregates. Such exchange of particles between aggregates was necessary for mixing to occur during fluidization of wet granular materials but required strong capillary liquid bridge forces to be overcome. © 2013 American Institute of Chemical Engineers AIChE J , 59: 4058–4067, 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here