z-logo
Premium
Design methodology for barrier‐based two phase flow distributor
Author(s) -
AlRawashdeh Ma'moun,
Nijhuis Xander,
Rebrov Evgeny V.,
Hessel Volker,
Schouten Jaap C.
Publication year - 2012
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.13750
Subject(s) - distributor , multiphase flow , mechanics , flow (mathematics) , manifold (fluid mechanics) , resistive touchscreen , microreactor , mixing (physics) , channel (broadcasting) , two phase flow , materials science , engineering , thermodynamics , chemistry , mechanical engineering , physics , electrical engineering , biochemistry , quantum mechanics , catalysis
The barrier‐based distributor is a multiphase flow distributor for a multichannel microreactor which assures flow uniformity and prevents channeling between the two phases. For N number of reaction channels, the barrier‐based distributor consists of a gas manifold, a liquid manifold, N barrier channels for the gas, N barrier channels for the liquid, and N mixers for mixing the phases before the reaction channels. The flow distribution is studied numerically using a method based on the hydraulic resistive networks (RN). The single phase hydraulic RN model (Commenge et al., 2002;48:345–358) is extended for two phases gas‐liquid Taylor flow. For Re GL <30, the accuracy for the model was above 90%. The developed‐model was used to study the effects of fabrication tolerance and barrier channel dimensions. A design methodology has been proposed as an algorithm to determine the required hydraulic resistance in the barrier channels and their dimensions. This methodology is demonstrated using a numerical example. © 2012 American Institute of Chemical Engineers AIChE J, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom