Premium
A high‐efficient rotating disk photoelectrocatalytic (PEC) reactor with macro light harvesting pyramid‐surface electrode
Author(s) -
Li Kan,
Yang Chen,
Wang YaLin,
Jia JinPing,
Xu YunLan,
He Yi
Publication year - 2012
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.12755
Subject(s) - electrode , macro , pyramid (geometry) , materials science , surface (topology) , optoelectronics , optics , chemistry , physics , computer science , geometry , mathematics , programming language
A series of pyramid‐surface TiO 2 /Ti electrodes were proposed, fabricated, and used in a rotating disk photoelectrocatalytic (PEC) reactor to treat rhodamine B (RB) solution. Compared with conventional planar electrode, pyramid‐surface electrode exhibited much lower light reflectivity, larger photocurrent, and better treatment efficiency. For samples containing 20 to 150 mg L −1 RB, 100– 98% color removal, and 87–30% COD removal were obtained in 150 min using 1/3 (h/w) pyramid‐surface electrode, much higher than 98–77% and 48–9% obtained by a conventional planer electrode. The excellent treatment performance attributed to two major reasons: (a) enhanced light harvest resulted from multiple reflections of irradiation light on the pyramid‐surface, and (b) enlarged electrode surface area enabling the electrode to carry more TiO 2 catalyst and pollutants for treatment. Experimental results also showed that the pyramid‐surface electrode consumed less power and exhibited superior performance when treating high concentration wastewater. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2448–2455, 2012