Premium
Equilibrium and kinetics of vancomycin adsorption on polymeric adsorbent
Author(s) -
Likozar Blaž,
Senica David,
Pavko Aleksander
Publication year - 2012
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.12559
Subject(s) - adsorption , mass transfer , diffusion , kinetics , freundlich equation , chemistry , langmuir , chromatography , chemical engineering , vancomycin , thermodynamics , organic chemistry , bacteria , physics , genetics , quantum mechanics , biology , engineering , staphylococcus aureus
Isolation step of vancomycin, a glycopeptide antibiotic, is usually done from fermentation broth filtrate, while its adsorption directly from the whole broth could rationalize the process. The equilibrium and kinetics of vancomycin adsorption from broth supernatant, diluted and whole broth on polymeric adsorbent was studied in this work. Experimental equilibrium data was correlated with Sips, Langmuir, Freundlich, and linear adsorption isotherms. Agreement between measured and regressed data for the first three mentioned models did not vary much and was relatively high. The maximum adsorbed amount for supernatant was higher than for fermentation broths because mycelium particles blocked adsorbent surface. Liquid film mass transfer studies showed that external mass transfer resistance could have been neglected. Diffusion of vancomycin inside adsorbent particles was acknowledged using a nonstructural, homogenous surface diffusion and bidisperse pore models. Model simulations indicated that kinetics of the process could be improved by using smaller adsorbent particles. © 2011 American Institute of Chemical Engineers AIChE J, 2012