z-logo
Premium
Rigorous synthesis and simulation of complex distillation networks
Author(s) -
Ruiz Gerardo J.,
Kim Seon B.,
Moes Laura,
Linninger Andreas A.
Publication year - 2011
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.12245
Subject(s) - distillation , computer science , collocation (remote sensing) , fractionating column , energy (signal processing) , selection (genetic algorithm) , computation , process engineering , mathematical optimization , algorithm , engineering , mathematics , artificial intelligence , chemistry , machine learning , statistics , organic chemistry
Abstract Recent insights for better understanding the thermodynamic foundations of separation processes have renewed the interest in exploring energy‐efficient distillation networks. Complex column networks have substantial potential for energy savings over conventional configurations. This article introduces a computational algorithm for synthesizing such complex energy‐efficient networks. A robust feasibility criterion drives the selection of design specification and operating conditions. It will be shown that columns composed of sections whose liquid stage composition profiles have no gaps are realizable. To prove the rigor of design computations, numerous separation networks were synthesized and validated with the Aspen flowsheet simulator. By using our computational results as input, AspenPlus simulations converged in a few iterations. Our method builds on temperature collocation, a thermodynamically motivated search method for determining feasible operating conditions and design details for achieving the desired product targets. Our findings suggest that significant energy savings can be realized with rigorous complex networks synthesis for industrial separation problems. © 2010 American Institute of Chemical Engineers AIChE J, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here