Premium
A mechanistic model for the water‐gas shift reaction over noble metal substituted ceria
Author(s) -
Deshpande Parag A.,
Hegde M. S.,
Madras Giridhar
Publication year - 2010
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.12062
Subject(s) - catalysis , water gas shift reaction , noble metal , cerium , chemistry , inorganic chemistry , reaction mechanism , ionic bonding , reaction rate , ion , organic chemistry
The water‐gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed high activity for the WGS reaction with high conversions below 250°C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained. © 2009 American Institute of Chemical Engineers AIChE J, 2010