z-logo
Premium
Continuous process for production of hydrogenated nitrile butadiene rubber using a Kenics® KMX static mixer reactor
Author(s) -
Madhuranthakam Chandra Mouli R.,
Pan Qinmin,
Rempel Garry L.
Publication year - 2009
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.11869
Subject(s) - natural rubber , catalysis , continuous reactor , nitrile , chemistry , osmium , residence time (fluid dynamics) , materials science , hydrogen , chemical engineering , composite material , organic chemistry , geotechnical engineering , ruthenium , engineering
A continuous process for hydrogenating nitrile butadiene rubber (NBR) was developed and its performance was experimentally investigated. A Kenics® KMX static mixer (SM) is used in the process as a gas–liquid reactor in which gaseous hydrogen reacts with NBR in an organic solution catalyzed by an organometallic complex such as an osmium complex catalyst. The Kenics® KMX SM was designed with 24 mixing elements with 3.81 cm diameter and arranged such that the angle between two neighboring elements is 90°. The internal structure of each element is open blade with the blades being convexly curved. The dimensions of the SM reactor are: 3.81 cm ID 80 S and 123 cm length and was operated cocurrently with vertical upflow. The NBR solutions of different concentrations (0.418 and 0.837 mol/L with respect to [CC]) were hydrogenated by using different concentrations of the osmium catalyst solution at various residence times. The reactions were conducted at a constant temperature of 138°C and at a constant pressure of 3.5 MPa. From the experimental results, it is observed that a conversion and/or degree of hydrogenation above 95% was achieved in a single pass from the designed continuous process. This is the first continuous process for HNBR production that gives conversions above 95% till date. Optimum catalyst concentration for a given mean residence time to achieve conversions above 95% were obtained. Finally, a mechanistic model for the SM reactor performance with respect to hydrogenation of NBR was proposed and validated with the obtained experimental results. © 2009 American Institute of Chemical Engineers AIChE J, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom