Premium
Risk management for a global supply chain planning under uncertainty: Models and algorithms
Author(s) -
You Fengqi,
Wassick John M.,
Grossmann Ignacio E.
Publication year - 2009
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.11721
Subject(s) - stochastic programming , time horizon , supply chain , mathematical optimization , computer science , linear programming , decomposition , scale (ratio) , supply chain management , dynamic programming , service (business) , operations research , algorithm , engineering , mathematics , economics , ecology , physics , economy , quantum mechanics , political science , law , biology
In this article, we consider the risk management for mid‐term planning of a global multi‐product chemical supply chain under demand and freight rate uncertainty. A two‐stage stochastic linear programming approach is proposed within a multi‐period planning model that takes into account the production and inventory levels, transportation modes, times of shipments, and customer service levels. To investigate the potential improvement by using stochastic programming, we describe a simulation framework that relies on a rolling horizon approach. The studies suggest that at least 5% savings in the total real cost can be achieved compared with the deterministic case. In addition, an algorithm based on the multi‐cut L‐shaped method is proposed to effectively solve the resulting large scale industrial size problems. We also introduce risk management models by incorporating risk measures into the stochastic programming model, and multi‐objective optimization schemes are implemented to establish the tradeoffs between cost and risk. To demonstrate the effectiveness of the proposed stochastic models and decomposition algorithms, a case study of a realistic global chemical supply chain problem is presented. © 2009 American Institute of Chemical Engineers AIChE J, 2009