Premium
Quantifying rate enhancements for acid catalysis in CO 2 ‐enriched high‐temperature water
Author(s) -
Hunter Shawn E.,
Savage Phillip E.
Publication year - 2008
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.11392
Subject(s) - chemistry , catalysis , hydrolysis , reaction rate , decarboxylation , order of reaction , inorganic chemistry , kinetics , organic chemistry , reaction rate constant , physics , quantum mechanics
Thermodynamic calculations revealed that 10 to 100‐fold increases in reaction rate are obtainable with added CO 2 (0.1–1 MPa) for an acid‐catalyzed reaction in high‐temperature liquid water (HTW) that is first order in H + concentration. These calculations suggest that CO 2 is most effective as a rate‐enhancing additive in HTW at lower temperatures (150–200°C). When compared with increased temperature as a competitive option for accelerating acid‐catalyzed reactions in HTW, CO 2 addition generally carries a lower pressure penalty (and no temperature penalty) for the model acid‐catalyzed reaction with activation energies of up to 35 kcal/mol. An experimental survey revealed that CO 2 addition is effective for achieving increased reaction rates for dibenzyl ether hydrolysis in HTW, but that bisphenol A cleavage, methyl benzoate hydrolysis, and o ‐phthalic acid decarboxylation were not significantly impacted by added CO 2 . This behavior is consistent with previous results for these reactions wherein mineral acid, rather than CO 2 , was added to lower the pH. A summary of experimental results reported for reactions in CO 2 ‐enriched HTW revealed that product yields of some reactions can be increased by a factor of 23 with added CO 2 . Taken collectively, these results suggest that CO 2 addition may be a practical technique for making HTW more attractive as a reaction medium for acid‐catalyzed organic synthesis. © 2007 American Institute of Chemical Engineers AIChE J, 2008
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom