z-logo
open-access-imgOpen Access
Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process
Author(s) -
Humphreys John,
Lan Rong,
Tao Shanwen
Publication year - 2021
Publication title -
advanced energy and sustainability research
Language(s) - English
Resource type - Journals
ISSN - 2699-9412
DOI - 10.1002/aesr.202000043
Subject(s) - catalysis , ammonia , ammonia production , hydride , chemistry , oxide , inorganic chemistry , materials science , hydrogen , nanotechnology , organic chemistry
Due to its essential use as a fertilizer, ammonia synthesis from nitrogen and hydrogen is considered to be one of the most important chemical processes of the last 100 years. Since then, an enormous amount of work has been undertaken to investigate and develop effective catalysts for this process. Although the catalytic synthesis of ammonia has been extensively studied in the last century, many new catalysts are still currently being developed to reduce the operating temperature and pressure of the process and to improve the conversion of reactants to ammonia. New catalysts for the Haber–Bosch process are the key to achieving green ammonia production in the foreseeable future. Herein, the history of ammonia synthesis catalyst development is briefly described as well as recent progress in catalyst development with the aim of building an overview of the current state of ammonia synthesis catalysts for the Haber–Bosch process. The new emerging ammonia synthesis catalysts, including electride, hydride, amide, perovskite oxide hydride/oxynitride hydride, nitride, and oxide promoted metals such as Fe, Co, and Ni, are promising alternatives to the conventional fused‐Fe and promoted‐Ru catalysts for existing ammonia synthesis plants and future distributed green ammonia synthesis based on the Haber–Bosch process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here