z-logo
Premium
Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives
Author(s) -
Atkins Duncan,
Ayerbe Elixabete,
Benayad Anass,
Capone Federico G.,
Capria Ennio,
Castelli Ivano E.,
CekicLaskovic Isidora,
Ciria Raul,
Dudy Lenart,
Edström Kristina,
Johnson Mark R.,
Li Hongjiao,
Lastra Juan Maria Garcia,
De Souza Matheus Leal,
Meunier Valentin,
Morcrette Mathieu,
Reichert Harald,
Simon Patrice,
Rueff JeanPascal,
Sottmann Jonas,
Wenzel Wolfgang,
Grimaud Alexis
Publication year - 2022
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202102687
Subject(s) - characterization (materials science) , battery (electricity) , workflow , computer science , nanotechnology , domain (mathematical analysis) , field (mathematics) , systems engineering , materials science , engineering , power (physics) , physics , mathematical analysis , mathematics , quantum mechanics , database , pure mathematics
Driven by the continuous search for improving performances, understanding the phenomena at the electrode/electrolyte interfaces has become an overriding factor for the success of sustainable and efficient battery technologies for mobile and stationary applications. Toward this goal, rapid advances have been made regarding simulations/modeling techniques and characterization approaches, including high‐throughput electrochemical measurements coupled with spectroscopies. Focusing on Li‐ion batteries, current developments are analyzed in the field as well as future challenges in order to gain a full description of interfacial processes across multiple length/timescales; from charge transfer to migration/diffusion properties and interphases formation, up to and including their stability over the entire battery lifetime. For such complex and interrelated phenomena, developing a unified workflow intimately combining the ensemble of these techniques will be critical to unlocking their full investigative potential. For this paradigm shift in battery design to become reality, it necessitates the implementation of research standards and protocols, underlining the importance of a concerted approach across the community. With this in mind, major collaborative initiatives gathering complementary strengths and skills will be fundamental if societal and environmental imperatives in this domain are to be met.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here