Premium
Galvanic Couples in Ionic Liquid‐Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?
Author(s) -
Dohmann Jan Frederik,
Horsthemke Fabian,
Küpers Verena,
Bloch Sophia,
Preibisch Yves,
Kolesnikov Aleksei,
Kolek Martin,
Stan Marian Cristian,
Winter Martin,
Bieker Peter
Publication year - 2021
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202101021
Subject(s) - ionic liquid , galvanic cell , electrolyte , materials science , corrosion , electrochemistry , anode , lithium (medication) , imide , dissolution , inorganic chemistry , galvanic corrosion , electrode , chemical engineering , metallurgy , organic chemistry , chemistry , catalysis , polymer chemistry , medicine , engineering , endocrinology
Abstract The breakthroughs in rechargeable lithium metal‐anode‐based batteries is still challenged by safety and performance limitations. Ionic liquid (IL)‐based electrolytes are in consideration for increased safety but their moderate electrolyte performance and high costs still suppress their usefulness in Li metal‐batteries. In an effort to deepen the understanding of the limited performance, galvanic corrosion as an electrochemical degradation process is herein identified as a contributing factor toward battery cell deterioration. Four different ILs, based on bis(trifluoromethylsulfonyl)imide in combination with the quaternary ammonium cations N ‐butyl‐ N ‐methylpyrrolidinium, N ‐methyl‐ N ‐propyl‐pyrrolidinium, N ‐butyl‐ N ‐methylpiperidinium, and N ‐butyltrimethylammonium, respectively, are systematically investigated for such corrosive side reactions. The reaction pathways of this commonly neglected phenomenon are found to be both Hofmann‐type and reductive eliminations. Supported by headspace‐gas chromatography‐mass spectrometry, the evolving gaseous reaction products are characterized. With zero resistance ammetry and Li electrochemical dissolution and deposition experiments, the dependency of galvanic corrosion on the presence of the galvanically coupled materials is elucidated. Variation of the lithium bis(trifluoromethylsulfonyl)imide concentration in the electrolytes is shown to influence the extent of detectable degradation products. Based on these findings, the necessity for more sophisticated electrode designs and electrolyte formulations is emphasized.