Premium
Triplet‐Charge Annihilation in a Small Molecule Donor: Acceptor Blend as a Major Loss Mechanism in Organic Photovoltaics
Author(s) -
MarinBeloqui Jose M.,
Toolan Daniel T. W.,
Panjwani Naitik A.,
Limbu Saurav,
Kim JiSeon,
Clarke Tracey M.
Publication year - 2021
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202100539
Subject(s) - organic solar cell , materials science , ultrafast laser spectroscopy , chemical physics , fullerene , acceptor , photochemistry , absorption (acoustics) , population , spectroscopy , chemistry , organic chemistry , polymer , physics , condensed matter physics , composite material , demography , quantum mechanics , sociology
Organic photovoltaics (OPV) are close to reaching a landmark 20% device efficiency. One of the proposed reasons that OPVs have yet to attain this milestone is their propensity toward triplet formation. Herein, a small molecule donor, DRCN5T, is studied using a variety of morphology and spectroscopy techniques, and blended with both fullerene and non‐fullerene acceptors. Specifically, grazing incidence wide‐angle X‐ray scattering and transient absorption, Raman, and electron paramagnetic resonance spectroscopies are focused on. It is shown that despite DRCN5T's ability to achieve OPV efficiencies of over 10%, it generates an unusually high population of triplets. These triplets are primarily formed in amorphous regions via back recombination from a charge transfer state, and also undergo triplet‐charge annihilation. As such, triplets have a dual role in DRCN5T device efficiency suppression: they both hinder free charge carrier formation and annihilate those free charges that do form. Using microsecond transient absorption spectroscopy under oxygen conditions, this triplet‐charge annihilation (TCA) is directly observed as a general phenomenon in a variety of DRCN5T: fullerene and non‐fullerene blends. Since TCA is usually inferred rather than directly observed, it is demonstrated that this technique is a reliable method to establish the presence of TCA.