Premium
A Scalable Integrated Dopant‐Free Heterostructure to Stabilize Perovskite Solar Cell Modules
Author(s) -
Sha Yongming,
Bi Enbing,
Zhang Yao,
Ru Pengbin,
Kong Weiyu,
Zhang Peng,
Yang Xudong,
Chen Han,
Han Liyuan
Publication year - 2021
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202003301
Subject(s) - materials science , dopant , perovskite (structure) , heterojunction , halide , solar cell , doping , optoelectronics , iodide , chemical engineering , nanotechnology , inorganic chemistry , chemistry , engineering
Perovskite solar cell (PSC) modules employing a hole transport layer (HTL) without unstable dopants possess high potential for improving operational stability. However, the low efficiencies of the devices greatly limit their commercial applications owing to the lower efficacy of the dopant‐free HTL, introduced by the unintentional n ‐doping effect of volatile ions from the halide‐rich perovskite surface. Here, a scalable heterostructure integrated by a methylammonium‐free perovskite film with an iodide‐rich surface, an ultrathin interlayer of bridge‐jointed graphene oxide nanosheets (BJ‐GO), and an HTL without additional ionic dopants is developed. In this heterostructure, the iodide ions are physically immobilized by the compact 2D network, and lead defects are chemically passivated by multiple coordination bonds. Moreover, the BJ‐GO with tunable surface energy enables a highly ordered HTL a considerably improved carrier mobility by an order of magnitude. Finally, the PSC module with an area of 35.80 cm 2 employing this heterostructure shows a certified efficiency of 15.3%. The encapsulated PSC modules retain over 91% of initial efficiency after the damp heat test at 85 °C and ≈85% relative humidity for 1000 h, while maintaining 90% of the initial value for 1000 h at the maximum power point under continuous 1‐Sun illumination at 60 °C.