Premium
Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach
Author(s) -
Lai Hanjian,
He Feng
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202002678
Subject(s) - intermolecular force , materials science , acceptor , organic solar cell , crystal engineering , photovoltaic system , crystal (programming language) , energy conversion efficiency , crystal structure , single crystal , chemical physics , nanotechnology , crystallography , molecule , optoelectronics , chemistry , computer science , polymer , organic chemistry , electrical engineering , supramolecular chemistry , physics , programming language , engineering , composite material , condensed matter physics
The power conversion efficiency of organic solar cell (OSC) devices has surpassed 18% rapidly. In order to further promote OSC development, it is necessary to understand the packing information at the atomic level to help develop acceptor systems with superior performance. The packing arrangements and intermolecular interactions of these acceptors in the solid state, observed by single crystal X‐ray crystallography, are often used to design materials with expected physicochemical properties. In this review, the chemical structures of acceptors revealed by single crystal X‐ray crystallography are summarized, and the relationship between structural design, packing arrangement, and device properties is discussed. In addition, the concept of “3D network packing” in acceptor systems is proposed, which offers better charge transfer properties in reported chlorinated, fluorinated, brominated, and trifluoromethylated systems, an understanding of 3D network transport also provides guidance in high‐performance materials design. Finally, some current issues related to single crystal studies in OSCs are discussed, with an emphasis on the significance of developing acceptors by understanding and adjusting the aggregation states and intermolecular interactions of materials by single crystal analysis.