Premium
Current Challenges in the Development of Quantum Dot Sensitized Solar Cells
Author(s) -
MoraSeró Iván
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202001774
Subject(s) - quantum dot , materials science , solar cell , nanotechnology , semiconductor , electrolyte , optoelectronics , engineering physics , electrode , physics , quantum mechanics
Quantum dot sensitized solar cells (QDSSCs) have experienced a continuous performance growth in the past years presenting a photoconversion efficiency > 13%. QDSSCs constitute a smart approach to take advantage of the properties of semiconductor quantum dots (QDs), mitigating the transport constrains. In contrast with other QD solar cell configurations, for QDSSCs, the record efficiencies have been reported with Pb and Cd‐free based sensitizers. The development of techniques in order to provide photoanodes with very high QD loading and the discovery of new electrolytes, including all solid configurations, are the most important future challenges that this technology must address to further increase cell performance and stability.