Premium
A Metal Organic Framework Derived Solid Electrolyte for Lithium–Sulfur Batteries
Author(s) -
Chiochan Poramane,
Yu Xingwen,
Sawangphruk Montree,
Manthiram Arumugam
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202001285
Subject(s) - polysulfide , electrolyte , materials science , ionic conductivity , lithium (medication) , inorganic chemistry , ionic liquid , conductivity , imide , chemical engineering , chemistry , polymer chemistry , electrode , organic chemistry , catalysis , medicine , engineering , endocrinology
Lithium–sulfur batteries (LSBs) are currently considered as promising candidates for next‐generation energy storage technologies. However, their practical application is hindered by the critical issue of the polysulfide‐shuttle. Herein, a metal organic framework (MOF)‐derived solid electrolyte is presented to address it. The MOF solid electrolyte is developed based on a Universitetet i Oslo (UIO) structure. By grafting a lithium sulfonate (‐SO 3 Li) group to the UIO ligand, both the ionic conductivity and the polysulfide‐suppression capability of the resulting ‐SO 3 Li grafted UIO (UIOSLi) solid electrolyte are greatly improved. After integrating a Li‐based ionic liquid (Li‐IL), lithium bis(trifluoromethanesulfonyl)imide in 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, the resulting Li‐IL/UIOSLi solid electrolyte exhibits an ionic conductivity of 3.3 × 10 −4 S cm −1 at room temperature. Based on its unique structure, the Li‐IL/UIOSLi solid electrolyte effectively restrains the polysulfide shuttle and suppresses lithium dendritic growth. Lithium–sulfur cells with the Li‐IL/UIOSLi solid electrolyte and a Li 2 S 6 catholyte show stable cycling performance that preserves 84% of the initial capacity after 250 cycles with a capacity‐fade rate of 0.06% per cycle.