Premium
Chemical Approaches for Stabilizing Perovskite Solar Cells
Author(s) -
Lee JinWook,
Park NamGyu
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201903249
Subject(s) - perovskite (structure) , materials science , photovoltaic system , chemical stability , nanotechnology , stability (learning theory) , engineering physics , chemical bond , commercialization , chemical engineering , computer science , chemistry , physics , electrical engineering , engineering , organic chemistry , machine learning , law , political science
Chemical bonding dictates not only the optoelectronic properties of materials, but also the intrinsic and extrinsic stability of materials. Here, the causes of intrinsic and extrinsic instability of perovskite materials are reviewed considering their correlation with the unique chemical‐bonding nature of perovskite materials. There are a number of key standardized stability tests established by the International Electrotechnical Commission for commercialized photovoltaic modules. Based on these procedures, the possible causes and related mechanisms of the material degradation that can arise during the test procedures are identified, which are discussed in terms of their chemical bonds. Based on the understanding of the critical causes, promising strategies for mitigating the causes to enhance the stability of perovskite solar cells are summarized. The stability of the state‐of‐the‐art perovskite solar cells implies a need for the development of improved stability‐testing protocols to move onto the next stage toward commercialization.