Premium
High‐Efficiency Thermoelectric Power Generation Enabled by Homogeneous Incorporation of MXene in (Bi,Sb) 2 Te 3 Matrix
Author(s) -
Lu Xiaofang,
Zhang Qihao,
Liao Jincheng,
Chen Hongyi,
Fan Yuchi,
Xing Juanjuan,
Gu Shijia,
Huang Jilong,
Ma Jiaxin,
Wang Jiancheng,
Wang Lianjun,
Jiang Wan
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201902986
Subject(s) - materials science , thermoelectric effect , thermal conductivity , seebeck coefficient , energy conversion efficiency , phonon , optoelectronics , condensed matter physics , thermodynamics , composite material , physics
Abstract The (Bi,Sb) 2 Te 3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti 3 C 2 T x ) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti 3 C 2 T x with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti 3 C 2 T x with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti 3 C 2 T x /BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.