Premium
Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries
Author(s) -
Yu Xingwen,
Wu Hao,
Koo Joseph H.,
Manthiram Arumugam
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201902872
Subject(s) - polysulfide , polypropylene , separator (oil production) , materials science , polymer , energy storage , membrane , lithium–sulfur battery , composite material , chemical engineering , chemistry , electrochemistry , electrode , power (physics) , physics , biochemistry , quantum mechanics , engineering , electrolyte , thermodynamics
Lithium–sulfur (Li–S) batteries are being considered as one of the most promising candidates for the development of next‐generation energy storage technologies. Although much progress has been made over the past decade, the development of Li–S batteries is still held back by a crucial polysulfide‐shuttle problem. To address this critical issue, an approach to reduce the pore size of the separator is presented here, to prevent the penetration of soluble polysulfide species. A polymer with intrinsic nanoporosity (PIN) is developed within the micrometer‐scale pores of a polypropylene separator. The framework of polypropylene acts as a skeleton to sustain reliable mechanical properties with the thin membrane. Upon the formation of PIN in the pores, the polypropylene separator maintains its thickness. With the thin PIN–polypropylene membrane, the Li–S cells can be operated with a relatively high sulfur loading. The PIN allows the transport of Li + ions, but suppresses the penetration of the polysulfide species. The Li–S batteries with the PIN‐modified polypropylene separator exhibit enhanced cycling performance.