z-logo
Premium
A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature
Author(s) -
Zhou Zhenfang,
Chen Bingbing,
Fang Tingting,
Li Yue,
Zhou Zhongfu,
Wang Qingjie,
Zhang Jiujun,
Zhao Yufeng
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201902023
Subject(s) - materials science , polysulfide , separator (oil production) , electrolyte , sulfur , chemical engineering , lithium–sulfur battery , oxide , electrode , metallurgy , chemistry , physics , engineering , thermodynamics
Abstract Rechargeable metal–sulfur batteries encounter severe safety hazards and fast capacity decay, caused by the flammable and shrinkable separator and unwanted polysulfide dissolution under elevated temperatures. Herein, a multifunctional Janus separator is designed by integrating temperature endurable electrospinning polyimide nonwovens with a copper nanowire‐graphene nanosheet functional layer and a rigid lithium lanthanum zirconium oxide‐polyethylene oxide matrix. Such architecture offers multifold advantages: i) intrinsically high dimensional stability and flame‐retardant capability, ii) excellent electrolyte wettability and effective metal dendritic growth inhibition, and iii) powerful physical blockage/chemical anchoring capability for the shuttled polysulfides. As a consequence, the as constructed lithium–sulfur battery using a pure sulfur cathode displays an outstandingly high discharge capacity of 1402.1 mAh g −1 and a record high cycling stability (approximately average 0.24% capacity decay per cycle within 300 cycles) at 80 °C, outperforming the state‐of‐the‐art results in the literature. Promisingly, a high sulfur mass loading of ≈3.0 mg cm −2 and a record low electrolyte/sulfur ratio of 6.0 are achieved. This functional separator also performs well for a high temperature magnesium–sulfur battery. This work demonstrates a new concept for high performance metal–sulfur battery design and promises safe and durable operation of the next generation energy storage systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here