Premium
Ternary Organic Blend Approaches for High Photovoltaic Performance in Versatile Applications
Author(s) -
Nam Minwoo,
Kang Joohan,
Shin Jisu,
Na Jihye,
Park Yunjae,
Cho Junhee,
Kim Byunghoon,
Lee Hyun Hwi,
Chang Rakwoo,
Ko DooHyun
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201901856
Subject(s) - ternary operation , materials science , organic solar cell , acceptor , photovoltaic system , photovoltaics , diode , optoelectronics , computer science , polymer , electrical engineering , physics , composite material , condensed matter physics , engineering , programming language
Ternary blend approaches are demonstrated as a universal means to improve overall performance of organic photovoltaics (OPVs) in both indoor and outdoor conditions. A comparative study on two donors:one acceptor (2D:1A) and one donor:two acceptors (1D:2A) ternary blends shows that both approaches are universally effective for indoor and outdoor operation; the 1D:2A devices incorporating a nonfullerene acceptor (NFA) benefit from less charge recombination and higher power conversion efficiencies (PCEs) for various irradiation conditions, while the performance of the 2D:1A blends depends on the emission spectrum of the incident light source. The synergistic merits of NFAs and ternary structure in the 1D:2A ternary OPVs secure better performance and generality regardless of the incident lighting. A combination of experimental and theoretical analyses unveils that NFAs optimize packing and arrangement of molecules to build efficient cascade ternary junctions in the 1D:2A blends, which can be important design guidelines for the third component in ternary OPVs. The optimized 1D:2A ternary OPV exhibits a new record PCE of 25.6% under a 200 lux light‐emitting diode (LED) and 26.4% under a 1000 lux LED, and superior durability under industrial relevant thermal stress, suggesting new opportunities in diverse practical applications challenging the currently dominant PV technologies.