z-logo
Premium
Intrinsic Effects of Ruddlesden‐Popper‐Based Bifunctional Catalysts for High‐Temperature Oxygen Reduction and Evolution
Author(s) -
Huan Yu,
Chen Shouxiao,
Zeng Rui,
Wei Tao,
Dong Dehua,
Hu Xun,
Huang Yunhui
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201901573
Subject(s) - oxygen , materials science , catalysis , oxide , valence (chemistry) , doping , bifunctional , non blocking i/o , inorganic chemistry , chemistry , metallurgy , biochemistry , optoelectronics , organic chemistry
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series A n +1 B n O 3 n +1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O 2− with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O 2− concentration; whereas high‐valence ion doping enhances the interstitial O 2– concentration and the lattice oxygen activity. The evaluations of six RP series (La 2 NiO 4 , La 2 CoO 4 , La 3 Co 2 O 7 , La 4 Ni 3 O 10 , La 2 MnO 4 , and La 2 CuO 4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here