z-logo
Premium
Laser‐Generated Nanocrystals in Perovskite: Universal Embedding of Ligand‐Free and Sub‐10 nm Nanocrystals in Solution‐Processed Metal Halide Perovskite Films for Effectively Modulated Optoelectronic Performance
Author(s) -
Guo Pengfei,
Yang Xiaokun,
Ye Qian,
Zhang Jin,
Wang Hongyue,
Yu Huiwu,
Zhao Wenhao,
Liu Chen,
Yang He,
Wang Hongqiang
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201901341
Subject(s) - materials science , nanocrystal , perovskite (structure) , halide , nanotechnology , optoelectronics , photovoltaics , quantum dot , photovoltaic system , chemical engineering , inorganic chemistry , ecology , chemistry , engineering , biology
Regulating the chemical/physical features of solution processed metal halide perovskite films by integrating sub‐10 nm nanocrystals is a highly promising strategy to advance their outstanding optoelectronic performance. However, significant challenges remain for the universal embedding of the well‐defined nanocrystals in the film matrix. By generating nanocrystals in desired solvents via pulsed laser irradiation in liquid, the authors demonstrate the effective decoration of sub‐10 nm nanocrystals in perovskite films for enhanced optoelectronic performance. It is believed that this improved performance is due to the modification of the widely adopted “antisolvent” to a novel “anti‐colloidal‐solution” (ACS). Exemplified by a typical ACS; carbon dots in chlorobenzene, its encouraging superiority in regulating, not only the films morphology, but also the electronic structure, is demonstrated. This results in perovskite solar cells with a champion efficiency of 21.41% as well as a pronounced stability over 5000 h in relative humidity of 40%. The capability of nanocrystal embedding for boosted photovoltaic performance is further exploited by employing other laser generated ACSs. Such a strategy may open up a route to regulating hybrid perovskite film performance via nanocrystal embedding for photovoltaics or even beyond optoelectronic applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here