Premium
Solution‐Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics
Author(s) -
Huang Zhanfeng,
Ouyang Dan,
Shih ChunJen,
Yang Boping,
Choy Wallace C. H.
Publication year - 2020
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201900903
Subject(s) - ternary operation , materials science , oxide , optoelectronics , perovskite (structure) , diode , nanotechnology , chemical engineering , computer science , engineering , metallurgy , programming language
With the remarkable progress in solution‐processed optoelectronics, high performance is required of the carrier transport/injection layer. Ternary oxides containing a variety of crystal structures, and adjustable composition that results in tunable optical and electrical properties, are one of the promising class of candidates to fulfill the requirements of carrier transport/injection layers for high‐performance and stable optoelectronic devices. Solution‐processed ternary oxides have seen considerable progress in recent decades, due to their advantages in the quest to design low‐cost, high‐performance, large‐scale, and stable optoelectronic devices. Herein, the recent advances of solution‐processed ternary oxides are reviewed. The first section consists of a brief introduction to the topic. In the following section, the fundamentals of the effect of tuning ternary oxide composition are summarized. Section three briefly reviews the synthesis approaches for preparing ternary oxides. Section four discusses the recent progress of solution‐processed ternary oxide as carrier transport/injection layer in optoelectronic devices (such as organic solar cells, perovskite solar cells, organic light emitting diodes, etc.). In this section, the impact of controlling ternary oxide composition on device performance and stability is highlighted. Finally, a brief summary and an outlook are given.