Premium
Fusing Nanowires into Thin Films: Fabrication of Graded‐Heterojunction Perovskite Solar Cells with Enhanced Performance
Author(s) -
Zhang Yi,
Yang Hanjun,
Chen Min,
Padture Nitin P.,
Chen Ou,
Zhou Yuanyuan
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201900243
Subject(s) - materials science , heterojunction , nanowire , perovskite (structure) , energy conversion efficiency , optoelectronics , nanotechnology , fabrication , homogeneity (statistics) , thin film , nanocrystal , planar , chemical engineering , medicine , statistics , alternative medicine , mathematics , pathology , engineering , computer graphics (images) , computer science
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr 3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr 3 ‐nanocrystals modification and with CsPbBr 3 ‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.