z-logo
Premium
An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dual‐Ion Batteries
Author(s) -
Han Xiaoqi,
Xu Gaojie,
Zhang Zhonghua,
Du Xiaofan,
Han Pengxian,
Zhou Xinhong,
Cui Guanglei,
Chen Liquan
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201804022
Subject(s) - cathode , electrolyte , materials science , intercalation (chemistry) , battery (electricity) , graphite , electrode , chemical engineering , decomposition , ion , nanotechnology , composite material , inorganic chemistry , chemistry , thermodynamics , organic chemistry , physics , power (physics) , engineering
Dual‐ion batteries (DIBs) with high operation voltage offer promising candidates for low‐cost clean energy chemistries. However, there still exist tough issues, including structural collapse of the graphite cathode due to solvent co‐intercalation and electrolyte decomposition on the electrode/electrolyte interface, which results in unsatisfactory cyclability and fast battery failure. Herein, Li 4 Ti 5 O 12 (LTO) modified mesocarbon microbeads (MCMBs) are proposed as a cathode material. The LTO layer functions as a skeleton and offers electrocatalytic active sites for in situ generation of a favorable and compatible cathode electrolyte interface (CEI) layer. The synergetic LTO‐CEI network can change the thermodynamic behavior of the PF 6 − intercalation process and maintain the structural integrity of the graphite cathode, as a “Great Wall” to protect the cathode from structural collapse and electrolyte decomposition. Such LTO‐CEI reinforced cathode exhibits a prolonged cyclability with 85.1% capacity retention after 2000 cycles even at cut‐off potential of 5.4 V versus Li + /Li. Moreover, the LTO‐modified MCMB (+)//prelithiated MCMB (−) full cell exhibits a high energy density of ≈200 Wh kg −1 , remarkably enhanced cyclability with 93.5% capacity retention after 1000 cycles. Undoubtedly, this work offers in‐depth insight into interface chemistry, which can arouse new originality to boost the development of DIBs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here