z-logo
Premium
Radially Oriented Single‐Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Material for Lithium‐Ion Batteries
Author(s) -
Xu Xing,
Huo Hua,
Jian Jiyuan,
Wang Liguang,
Zhu He,
Xu Sheng,
He Xiaoshu,
Yin Geping,
Du Chunyu,
Sun Xueliang
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201803963
Subject(s) - materials science , cathode , lithium (medication) , ion , crystal (programming language) , diffusion , chemical engineering , single crystal , nanotechnology , crystallography , analytical chemistry (journal) , chemistry , thermodynamics , medicine , physics , quantum mechanics , computer science , engineering , programming language , endocrinology , chromatography
Ni‐rich Li[Ni x Co y Mn 1− x − y ]O 2 ( x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g −1 . Unfortunately, the anisotropic properties associated with the α‐NaFeO 2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li + ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li + diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g −1 at 3.0–4.3 V) and rate capability (152.7 mAh g −1 at a current density of 1000 mA g −1 ). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here