Premium
Efficient Li‐Ion‐Conductive Layer for the Realization of Highly Stable High‐Voltage and High‐Capacity Lithium Metal Batteries
Author(s) -
Lee JungIn,
Shin Myungsoo,
Hong Dongki,
Park Soojin
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201803722
Subject(s) - materials science , electrolyte , anode , cathode , electrochemistry , electrode , dielectric spectroscopy , chemical engineering , lithium (medication) , fast ion conductor , nanotechnology , inorganic chemistry , electrical engineering , chemistry , medicine , endocrinology , engineering
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li 2 TiO 3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 1.5 O 4 , and LiMn 2 O 4 ) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.