Design‐to‐Device Approach Affords Panchromatic Co‐Sensitized Solar Cells
Author(s) -
Cooper Christopher B.,
Beard Edward J.,
VázquezMayagoitia Álvaro,
Stan Liliana,
Stenning Gavin B. G.,
Nye Daniel W.,
Vigil Julian A.,
Tomar Tina,
Jia Jingwen,
Bodedla Govardhana B.,
Chen Song,
Gallego Lucía,
Franco Santiago,
Carella Antonio,
Thomas K. R. Justin,
Xue Song,
Zhu Xunjin,
Cole Jacqueline M.
Publication year - 2019
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201802820
Subject(s) - panchromatic film , workflow , materials science , photovoltaic system , absorption (acoustics) , dye sensitized solar cell , computer science , nanotechnology , process engineering , database , artificial intelligence , electrical engineering , engineering , image resolution , chemistry , electrode , electrolyte , composite material
Abstract Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.