z-logo
Premium
Rational Architecture Design Enables Superior Na Storage in Greener NASICON‐Na 4 MnV(PO 4 ) 3 Cathode
Author(s) -
Li Huangxu,
Jin Ting,
Chen Xiaobin,
Lai Yanqing,
Zhang Zhian,
Bao Weizhai,
Jiao Lifang
Publication year - 2018
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201801418
Subject(s) - materials science , cathode , vanadium , fast ion conductor , aerogel , carbon fibers , redox , nanotechnology , chemical engineering , chemistry , electrode , electrolyte , metallurgy , composite material , engineering , composite number
Na 3 V 2 (PO 4 ) 3 has attracted great attention due to its high energy density and stable structure. However, in order to boost its application, the discharge potential of 3.3–3.4 V (vs Na + /Na) still needs to be improved and substitution of vanadium with other lower cost and earth‐abundant active redox elements is imperative. Therefore, the Na superionic conductor (NASICON)‐structured Na 4 MnV(PO 4 ) 3 seems to be more attractive due to its lower toxicity and higher voltage platform resulting from the partial substitution of V with Mn. However, Na 4 MnV(PO 4 ) 3 still suffers from poor electronic conductivity, leading to unsatisfactory capacity delivering and poor high‐rate capability. In this work, a graphene aerogel–supported in situ carbon–coated Na 4 MnV(PO 4 ) 3 material is synthesized through a feasible solution‐route method. The elaborately designed Na 4 MnV(PO 4 ) 3 can reach ≈380 Wh kg −1 at 0.5 C (1 C = 110 mAh g −1 ) and realize superior high‐rate capability evenat 50 C (60.1 mAh g −1 ) with a long cycle‐life of 4000 cycles at 20 C. This impressive progress should be ascribed to the multifunctional 3D carbon framework and the distinctive structure of trigonal Na 4 MnV(PO 4 ) 3 , which are deeply investigated by both experiments and calculations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom