Premium
New Strategy for Two‐Step Sequential Deposition: Incorporation of Hydrophilic Fullerene in Second Precursor for High‐Performance p‐i‐n Planar Perovskite Solar Cells
Author(s) -
Xu Guiying,
Xue Rongming,
Chen Weijie,
Zhang Jingwen,
Zhang Moyao,
Chen Haiyang,
Cui Chaohua,
Li Hongkun,
Li Yaowen,
Li Yongfang
Publication year - 2018
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201703054
Subject(s) - materials science , perovskite (structure) , iodide , crystallinity , energy conversion efficiency , chemical engineering , alkoxy group , deposition (geology) , fullerene , nanotechnology , inorganic chemistry , organic chemistry , alkyl , optoelectronics , chemistry , composite material , paleontology , sediment , biology , engineering
In p‐i‐n planar perovskite solar cells (pero‐SCs) based on methylammonium lead iodide (MAPbI 3 ) perovskite, high‐quality MAPbI 3 film, perfect interfacial band alignment and efficient charge extracting ability are critical for high photovoltaic performance. In this work, a hydrophilic fullerene derivative [6,6]‐phenyl‐C 61 ‐butyric acid‐(3,4,5‐tris(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)phenyl)methanol ester (PCBB‐OEG) is introduced as additive in the methylammonium iodide precursor solution in the preparation of MAPbI 3 perovskite film by two‐step sequential deposition method, and obtained a top‐down gradient distribution with an ultrathin top layer of PCBB‐OEG. Meanwhile, a high‐quality perovskite film with high crystallinity, less trap‐states, and dense‐grained uniform morphology can well grow on both hydrophilic (poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonic acid)) and hydrophobic (polytriarylamine, PTAA) hole transport layers. When the PCBB‐OEG‐containing perovskite film (pero‐0.1) is prepared in a p‐i‐n planar pero‐SC with the configuration of ITO/PTAA/pero‐0.1/[6,6]‐phenyl‐C 61 ‐butyric acid methyl ester/Al, the device delivers a promising power conversion efficiency (PCE) of 20.2% without hysteresis, which is one of the few PCE over 20% for the p‐i‐n planar pero‐SCs. Importantly, the pero‐0.1‐based device shows an excellent stability that can retain 98.4% of its initial PCE after being exposed for 300 h under ambient atmosphere with a high humidity, and the flexible pero‐SCs based on pero‐0.1 also demonstrate a promising PCE of 18.1%.