Premium
Metal‐Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride
Author(s) -
Han YingYing,
Lu XiuLi,
Tang ShangFeng,
Yin XuePeng,
Wei ZhenWei,
Lu TongBu
Publication year - 2018
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201702992
Subject(s) - photocathode , photocurrent , water splitting , graphitic carbon nitride , materials science , heterojunction , carbon nitride , aqueous solution , reversible hydrogen electrode , photocatalysis , nitride , metal , semiconductor , electrode , nanotechnology , optoelectronics , catalysis , electrochemistry , reference electrode , chemistry , electron , physics , organic chemistry , quantum mechanics , layer (electronics) , metallurgy
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C 3 N 4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C 3 N 4 to construct a metal‐free 2D/2D heterojunction of g‐C 3 N 4 /GDY as an efficient photoelectrocatalyst for water splitting. The g‐C 3 N 4 /GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C 3 N 4 /GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C 3 N 4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm −2 ) compared to that of g‐C 3 N 4 photocathode (−32 μA cm −2 ) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C 3 N 4 /GDY, which displays an photocurrent of −133 μA cm −2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom