z-logo
Premium
Flexible and Stretchable Biobatteries: Monolithic Integration of Membrane‐Free Microbial Fuel Cells in a Single Textile Layer
Author(s) -
Pang Sumiao,
Gao Yang,
Choi Seokheun
Publication year - 2018
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201702261
Subject(s) - microbial fuel cell , materials science , fabrication , anode , substrate (aquarium) , cathode , textile , layer (electronics) , nanotechnology , overpotential , electrical conductor , power density , electrode , composite material , power (physics) , electrochemistry , electrical engineering , chemistry , medicine , physics , oceanography , alternative medicine , engineering , pathology , quantum mechanics , geology
The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm −2 and current density of 52 µA cm −2 , which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here