Premium
Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%
Author(s) -
Lin Yuanbao,
Jin Yingzhi,
Dong Sheng,
Zheng Wenhao,
Yang Junyu,
Liu Alei,
Liu Feng,
Jiang Yufeng,
Russell Thomas P.,
Zhang Fengling,
Huang Fei,
Hou Lintao
Publication year - 2018
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201701942
Subject(s) - organic solar cell , materials science , active layer , crystallinity , energy conversion efficiency , acceptor , indium tin oxide , chemical engineering , layer (electronics) , polymer solar cell , open circuit voltage , nanotechnology , optoelectronics , composite material , polymer , voltage , electrical engineering , physics , condensed matter physics , engineering , thin film transistor
Abstract The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐ d :2′,3′‐ d ′]‐ s ‐indaceno[1,2‐ b :5,6‐ b ′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm 2 ) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.