z-logo
Premium
Spiro‐Phenylpyrazole‐9,9′‐Thioxanthene Analogues as Hole‐Transporting Materials for Efficient Planar Perovskite Solar Cells
Author(s) -
Wang Yang,
Zhu Zonglong,
Chueh ChuChen,
Jen Alex K.Y.,
Chi Yun
Publication year - 2017
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.201700823
Subject(s) - xanthene , materials science , perovskite (structure) , energy conversion efficiency , dopant , photovoltaics , atom (system on chip) , acridine , electrochemistry , electron mobility , photovoltaic system , nanotechnology , optoelectronics , photochemistry , crystallography , doping , chemistry , organic chemistry , electrode , computer science , embedded system , biology , ecology
Perovskite solar cells have emerged as a promising technique for low‐cost, light weight, and highly efficient photovoltaics. However, they still largely rely on 2,2′,7,7′‐tetrakis( N , N ‐di‐ p ‐methoxyphenylamine)‐9,9′‐spirobifluorene (Spiro‐OMeTAD) to serve as hole‐transporting materials (HTMs). Here, a series of HTMs with small molecular weight is designed, which are constructed on a spiro core involving phenylpyrazole and a second heteroaromatics, i.e., xanthene (O atom), thioxanthene (S atom), and acridine (N atom). Through varying from phenylpyrazole substituted xanthene ( PPyra‐XA ), thioxanthene ( PPyra‐TXA ), to acridine ( PPyra‐ACD ), their optical and electrochemical properties, hole mobilities, and the photovoltaic performance are optimized. As a consequence, PPyra‐TXA based device exhibits the highest power conversion efficiency (PCE) of 18.06%, outperforming that of Spiro‐OMeTAD (16.15%), which could be attributed to the enhancement of hole mobility exerted by the thioxanthene. In addition, the dopant‐free device shows PCE of 11.7%. These results open a new direction for designing spiro‐HTMs by simple modification of chemical structures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here